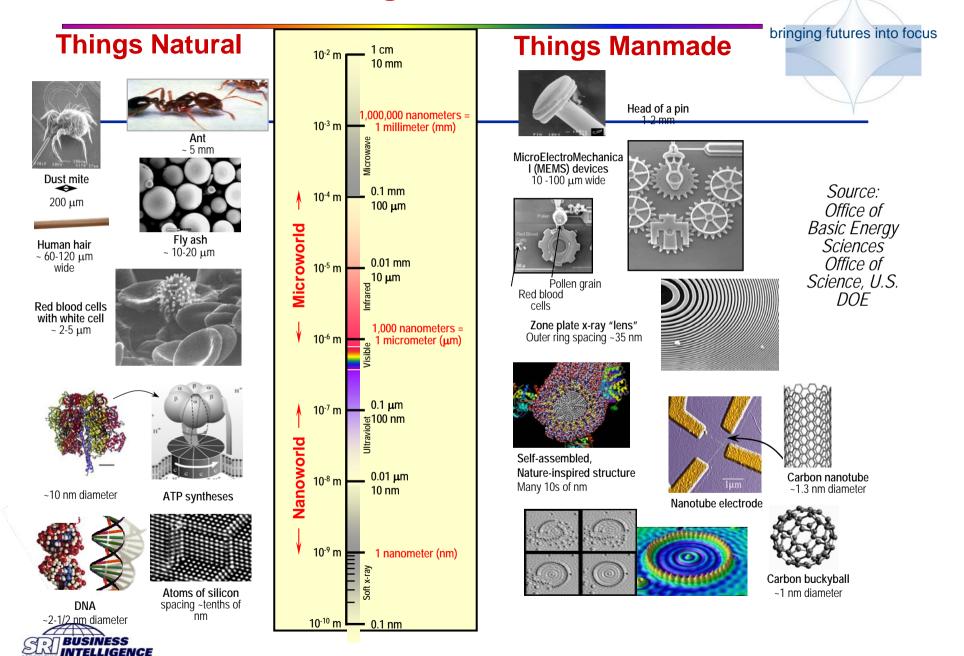
Opportunities for Nanomaterials in Automotive Applications

Stephen Taylor
Senior Consultant

staylor@sric-bi.com http://www.sric-bi.com



Agenda

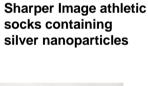
- Introduction to Nanotechnology and Nanomaterials
- Automotive industry needs
 - Applications
- Commercial opportunities and value creation
- Conclusions

The Scale of Things - Nanometers and More

An SRI International Business Partner

Nanotechnology and nanomaterials currently find use in myriad applications....

Daewoo refrigerator containing nano silver



CELETUM 300°

Victor Castano antigraffiti paint containing silica nanoparticles

Dockers stainresistant trousers (NanoTex technology)

GMR disk drive

zelens

Intel Pentium 4 processor using 90 nm process technology

Lion Corp. antimicrobial sprays containing ionized nano-silver particle attached to the surface of aluminasilica just 15 nanometers in diameter

Sharper Image plastic storage bags containing silver nanoparticles

Easton CNT bicycle components

Zelens fullerenecontaining cosmetic creams

Altair's NanoSafe rechargeable nano titanate battery module

displays using

nanostructured

polymer films

Boots Soltan sunscreens containing titanium dioxide nanoparticles

© 2007 by SRI Consulting Business Intelligence

...but numerous opportunities exist in virtually all industries

- Energy generation and storage
- Aerospace/defense
- Electronics
- Medicine and health care
- Food and beverages
- Textiles and clothing
- Cosmetics and personal care
- Construction
- AUTOMOTIVE

·	Technology Sector	Nanoparticles	Nanofilms	Composites	Tools	Devices
e	Information and Communication	Nanowires, transistors, quantum computing, displays	Magnetic films for data storage, lens coatings, semiconductor	Plastic electronics, flat panel displays	STM, lithography, MBE, AFM, molecular assemblers	MEMS switches, carbon nanotube devices, sensors
th	Healthcare and Life Sciences	Drug delivery, image contrast agents, medical dressings	Coated particles, scalpel blades	Medical implants		Lab-on-a-chip, drug discovery, micro-fluidics, microarrays
es	Energy and Environment	Fuel additives, catalysts, hydrogen storage	Battery technology, advanced solar cells	Batteries, supercapacito rs, fuel cells		Thermoelectri c
	Automotive, Aerospace and Industrial	Catalysts, electrodes, lubricants	Advanced coatings (e.g. scratch- and corrosion resistant, antimicrobial)	Exterior and interior parts, engine/powertrain components, fuel-delivery, tires		MEMS sensors, LEDs, optical switches, microcontrollers, displays, actuators
	Other	Cosmetics, personal care products, cosmeceuticals , clothes	Specialist coatings (e.g. for textiles and clothes)	Packaging (food and beverages)	•	

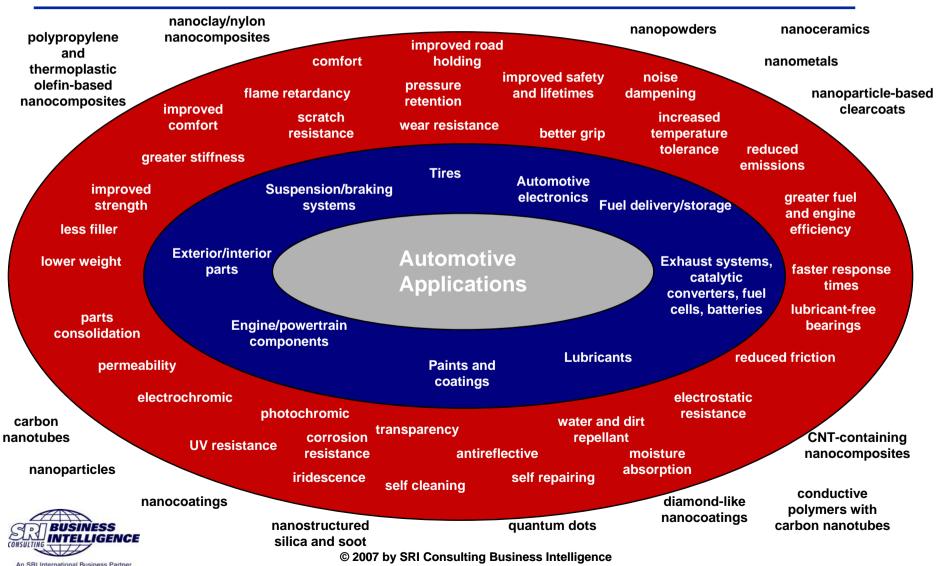
Source: 3i (Based on a diagram from Evolution Capital)

Automotive industry needs

- Automotive industry is already one of the largest and most demanding users of material technologies (EPs, PMCs, CMCs, MMCs, steel, aluminum)
- The industry helps drive advances in material technologies that bring about cost-effective improvements in vehicle performance, safety, and convenience
- Increased environmental and safety legislation dictating the greater use of advanced materials in automotive applications

Therefore, increased auto demand for high-efficiency, high-performance materials.

Auto applications: a staggering potential


 OEMs and auto part suppliers are already implementing nanotechnology in the production of vehicles

Virtually all aspects of a vehicle could benefit from the use of nanomaterials

Current and future automotive applications and potential benefits of nanomaterials

Opportunities and value creation

- Millions of new vehicles produced each year (1000 new vehicles hit the streets of Beijing, China EACH day)
- Millions of current vehicles require new parts and services each year
- Project NanoRoadSME estimates that the design and manufacturing of cars, trucks, and buses can be affected by nanotechnology and related technologies up to 60%
- Frost & Sullivan predicts that by 2015, nanotechnology will apply to 70% of automotive applications, with revenues in the region of \$6.5 billion

But certain constraints may affect uptake: tough time for some automotive OEMs coupled with conservative automotive industry and long product cycles; current nanomaterials price/performance ratios; process-production technologies; material competition, quality, and health and safety issues; and recycling nanomaterials

Potential NM value chain

Enabling
Components Systems Applications

Nanomaterials

Nanointermediates Parts and systems

Vehicles

Nanoparticles

- Nanocor
- ApNano
- Oxonica
- Southern Clay Products
- Sud-Chemie
- Degussa
- Cabot
- Argonide Corp.
- Reade Advanced Materials
- PlasmaChem

CNTs and Fullerenes

- Zvvex
- Bayer MaterialScience
- Carbolex
- Carbon Nanotechnologies
- Frontier Carbon
- Materials and Electrochemical Research Corp.
- Mitsui

Nanocomposites

- Basell Polyolefins
- BASF
- Dow Automotive
- GE Advanced Materials
- Hyperion Catalysis
- Mitsui Chemicals
- Polykemic
- PolyOne Corp.
- Tovota
- Ube Industries
- Unitika

Paints/Coatings

- BASF
- BMW
- DaimlerChrysler
- PPG Industries
- Nanogate Coating Systems
- Nanophase Technologies

Ceramics and Metal Matrix Composites

- Honda Motor Co.
- Nissin Koqyo
- NKK

Tier 1 Suppliers

- ArvinMeritor
- Borg-Warner
- Bosch
- Denso Corp.
- Delphi
- Federal-Mogul
- Johnson Controls
- · Mitsuba Corp.
- Siemens VDO
- Takata
- ThyssenKrupp
- Valeo
- Visteon

Tier 2/3 Suppliers

• Thousands

Automakers

- BMW
- DaimlerChrysler
- Dongfeng
- Fiat
- Ford
- General Motors
- Honda
- Hyundai/Kia
- Mitsubishi
- Nissan
- Porsche
- Proton
- PSA
- Renault
- SAIC
- Tovota
- Volkswagen

Where do opportunities lie? What type of players are involved and in which regions?

BUSINESS INTELLIGENCE

© 2007 by SRI Consulting Business Intelligence

bringing futures into focus

Selected players using nanotechnology for auto applications

FNGINF/POWERTRAIN:

CRF: GE Plastics: Aveka: Audi; Mitsui Chemicals; Synkera Technologies: Ford: Sulzer-Metco

EXTERIOR/INTERIOR PARTS: Bayer; Blackhawk: GM: GE Plastics: SportRack Automotive; Toyota; Dow Automotive; Honda; smart GmbH; JFE (NKK and

Kawasaki Steel)

Degussa; Michelin; InMat

TIRES: Bridgestone;

Continental: Cabot:

PAINTS/COATINGS: BASF: BMW; DaimlerChrysler; Hyperion Catalysis; PPG; Sustech: DuPont: Ecology Coatings' CRF (NANOMAG

project)

EXHAUST SYSTEMS/CATALYTIC **CONVERTERS/FUEL CELLS/BATTERIES: A123** Systems, Altair; Engelhard; Oxonica: Nanophase: QinetiQ: Strem Chemicals: Nanostellar; Catalytic

Solutions; Nanox; Umicore

FUEL DELIVERY/STORAGE: Toyota; Ube Industries; Unitika

LUBRICANTS: ApNano Materials: PlasmaChem: VW; Hatco

AUTOMOTIVE ELECTRONICS: Fujitsu; Infineon: Continental: Bosch; Siemens; Synkera Technologies

Automotive Applications

SUSPENSION/BRAKING: Continental Teves; Bridgestone; Honda; Lord Corp.; Strem Chemicals; TWR

Who gains and who loses? —2 examples: nanocomposites and nanocoatings

Nanocomposite body panels

Value chain participant	Value shift as a result of nanotechnology	Gain/Loss
Consumer	Lower fuel consumption	Gain
	More durable parts and better performance	
Auto Manufacturer	Cost savings of nanocomposites over conventional talc-filled composites	Gain
	Easier manufacturing; greater design flexibility; use of lighter engine and suspension	
Plastic supplier	Increase in the amount of plastic sold to OEM per vehicle	Gain
Nanoclay supplier	Increased sales	Gain
Petroleum company	Lower fuel consumption (less gas sold)	Loss
Conventional talc filler supplier	Reduced sales	Loss

The environment also gains through reduced emissions and easily recyclable parts

Source: Lux Research; SRIC-BI

Who gains and who loses?

Nanocoatings

Value chain participant	Value shift as a result of nanotechnology	Gain/Loss
Consumer	Wash car less often	Gain
	Less likely to repair windshield	
	Improved appearance (possible higher resale value)	
Consumer	Cost of nanocoatings passed on by OEM	Loss
Auto Manufacturer	Reduction in warranty claims	Gain
	Improved appearance (higher resale value for vehicles bought out of lease	
Coating manufacturer	Increased sales of nanocoatings	Gain
Car wash/detailing shop	Cars are washed less often	Loss
Auto glass repair company	Windshields less likely to require repair	Loss

Source: Lux Research; SRIC-BI

Conclusions

- Nanotechnology will likely emerge as a key technology in automotive manufacture, especially in the materials replacement arena
- Today, nanocomposites, coatings, and paints see use; nanocatalysts, nanodispersions and nanoadditives in lubricants, fuels, and coolants will follow
- Players will need to address a number of issues, but the possibility exists for:
 - Auto OEMs to gain through improved product performance, cost savings and meeting environmental and safety legislation
 - Tier 1 suppliers to gain through increased demand from auto OEMs for high-performance materials and systems
 - Greater competition between Tier 2 suppliers as new players join the mix
 - Consumers to gain through better performing vehicles and cost savings

For Further Information

See our Explorer Nanomaterials web page:

http://www.sric-bi.com/Explorer/NM.shtml

For further information contact:

Stephen Taylor Senior Consultant, Business Development SRI Consulting Business Intelligence (SRIC-BI)

Tel: +44 (0)20 82561407 Mob: +44 (0)7801 480078 e-mail: staylor@sric-bi.com

